Long Time Behavior of Solutions to Nernst-Planck and Debye-Hückel Drift-Diffusion Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Time Behavior of Solutions to Nernst–Planck and Debye–Hückel Drift–Diffusion Systems

We study the convergence rates of solutions to drift-diffusion systems (arising from plasma, semiconductors and electrolytes theories) to their self-similar or steady states. This analysis involves entropytype Lyapunov functionals and logarithmic Sobolev inequalities.

متن کامل

Long Time Behavior of Solutions to Nernst-planck and Debye-h Uckel Drift-diiusion Systems

We study the convergence rates of solutions to drift-diiusion systems (arising from plasma, semiconductors and electrolytes theories) to their self-similar or steady states. This analysis involves entropy-type Lyapunov functionals and logarithmic Sobolev inequalities.

متن کامل

Institute for Mathematical Physics Long Time Behavior of Solutions to Nernst{planck and Debye{h Uckel Drift{diiusion Systems Long Time Behavior of Solutions to Nernst-planck and Debye-h Uckel Drift-diiusion Systems

We study the convergence rates of solutions to drift-diiusion systems (arising from plasma, semiconductors and electrolytes theories) to their self-similar or steady states. This analysis involves entropy-type Lyapunov functionals and logarithmic Sobolev inequalities.

متن کامل

Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.

We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively stud...

متن کامل

Global existence versus blow up for some models of interacting particles Piotr

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst–Planck and the Debye–Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Poincaré

سال: 2000

ISSN: 1424-0637

DOI: 10.1007/s000230050003